41 research outputs found

    Permeability Estimates of Self-Affine Fracture Faults Based on Generalization of the Bottle Neck Concept

    Full text link
    We propose a method for calculating the effective permeability of two-dimensional self-affine permeability fields based on generalizing the one-dimensional concept of a bottleneck. We test the method on fracture faults where the local permeability field is given by the cube of the aperture field. The method remains accurate even when there is substantial mechanical overlap between the two fracture surfaces. The computational efficiency of the method is comparable to calculating a simple average and is more than two orders of magnitude faster than solving the Reynolds equations using a finite-difference scheme

    Understanding Terrorist Organizations with a Dynamic Model

    Full text link
    Terrorist organizations change over time because of processes such as recruitment and training as well as counter-terrorism (CT) measures, but the effects of these processes are typically studied qualitatively and in separation from each other. Seeking a more quantitative and integrated understanding, we constructed a simple dynamic model where equations describe how these processes change an organization's membership. Analysis of the model yields a number of intuitive as well as novel findings. Most importantly it becomes possible to predict whether counter-terrorism measures would be sufficient to defeat the organization. Furthermore, we can prove in general that an organization would collapse if its strength and its pool of foot soldiers decline simultaneously. In contrast, a simultaneous decline in its strength and its pool of leaders is often insufficient and short-termed. These results and other like them demonstrate the great potential of dynamic models for informing terrorism scholarship and counter-terrorism policy making.Comment: To appear as Springer Lecture Notes in Computer Science v2: vectorized 4 figures, fixed two typos, more detailed bibliograph

    The developmental dynamics of terrorist organizations

    Get PDF
    We identify robust statistical patterns in the frequency and severity of violent attacks by terrorist organizations as they grow and age. Using group-level static and dynamic analyses of terrorist events worldwide from 1968-2008 and a simulation model of organizational dynamics, we show that the production of violent events tends to accelerate with increasing size and experience. This coupling of frequency, experience and size arises from a fundamental positive feedback loop in which attacks lead to growth which leads to increased production of new attacks. In contrast, event severity is independent of both size and experience. Thus larger, more experienced organizations are more deadly because they attack more frequently, not because their attacks are more deadly, and large events are equally likely to come from large and small organizations. These results hold across political ideologies and time, suggesting that the frequency and severity of terrorism may be constrained by fundamental processes.Comment: 28 pages, 8 figures, 4 tables, supplementary materia

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Operational resilience: concepts, design and analysis

    No full text
    Building resilience into today’s complex infrastructures is critical to the daily functioning of society andits ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This studyproposes quantitative measures that capture and implement the definition of engineering resilienceadvanced by the National Academy of Sciences. The approach is applicable across physical, information,and social domains. It evaluates the critical functionality, defined as a performance function of time setby the stakeholders. Critical functionality is a source of valuable information, such as the integratedsystem resilience over a time interval, and its robustness. The paper demonstrates the formulation ontwo classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks.For both models synthetic case studies are used to explore trends. For the first class, the approach isalso applied to the Linux operating system. Results indicate that desired resilience and robustness levelsare achievable by trading off different design parameters, such as redundancy, node recovery time, andbackup supply available. The nonlinear relationship between network parameters and resilience levelsconfirms the utility of the proposed approach, which is of benefit to analysts and designers of complexsystems and networks

    Vertex-Pursuit in Random Directed Acyclic Graphs

    No full text

    Optimizing Distribution of Pandemic Influenza Antiviral Drugs

    No full text
    We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface
    corecore